Response to Instruction & Intervention: It's about Core Instruction!

Arkansas ASCD
RtI: Continuing the Conversation
September 17, 2015

Judy Elliott
Former Chief Academic Officer
Los Angeles Unified School District
jelliott@4edulead.com

- Maintain a strong sense of leadership
- Ponder: What do we have in place to support RtI? Is it working? How do we know?
- Learn about the 4-Step Problem Solving process as the backbone of RtI
- Have courageous conversations
- Breathe -- you're at an innovative meeting!

A Shift in Thinking
The central question is not:
“What about the students is causing the performance discrepancy?”

but rather...

“What about the interaction of the curriculum, instruction, learners and learning environment should be altered so that the students will learn?”

AASCD Fall Forward Conference Sept 2015
JElliot, Ph.D.
Two basic questions…

Are you happy with your data?

Is every classroom one you would put your own flesh and blood?

The RtI paradigm shift …

Was Then…
Assume the problem resides within the student

Is Now…
Assume first that the problem is with the instructional environment

Paradigm Culture Shift

- Eligibility focus
 - Diagnose and Place
 - Get label

- Outcome focus
 - Problem-Solving
 - Response to Instruction & Intervention
 - Get help
Kelisha

• Current Grade Placement = 5th
• Current Reading Level = 2nd

William

• Current Grade Placement = 8th
• Current Reading Level = 5th

Current System

• Both Kelisha and William are referred for Special Education eligibility
• Both are tested using a battery of standardized assessments

Next...

• Severe Discrepancy
• Diagnosis: SLD (Specific Learning Disability)
• Placement in Special Education
The Current Assumption Is…

A discrepancy exists, thus there must be something wrong with Kelisha and William.

The Question is…

How do we know what caused the discrepancy if we never looked at anything but the students?

- Could there be problems that exist with core and/or supplemental curriculum?
- Did Kelisha receive high quality instruction starting in Kindergarten? William?
- Were interventions implemented with consistency and fidelity? Monitored?

AASCD Fall Forward Conference Sept 2015
JElliott, Ph.D.
Every system is perfectly aligned for the results it gets.

Year 1 is Tier 1

“The most legitimate and effective school improvement effort is *not* to design a system of interventions to help students at risk, but rather to *upgrade the core curriculum.*”

-Mike Mattos

The ability to make the complicated simple is an indicator of genius.

-Albert Einstein
Let's Calibrate: The Vision

- All students at or above proficiency
- Students have the social and emotional behaviors that support engaged learning
- An integrated system of educational services for ‘Every Ed’
- Support Services are embraced as a necessary component for successful schooling

Let’s Calibrate: The Outcomes

- Good first teaching for all students!
- Targeted instruction and interventions for learners, both at-risk and highly able
- Significant improvements in pro-social behaviors
- Reduction in over-representation of diverse student groups in low academic performance, special education, suspension/expulsion, and alternative education
- Growth & overall improvement in achievement rates
- Maximize & realign resources for a maximum return on investment

RtI - The Change Model

Consensus

Essential Components
- Multi-tiered framework
- Problem-solving process
- Data-based decision-making
- Academic engaged time
- Professional development

Implementation
Infrastructure
Stages of Systems Change

Consensus

- Belief is shared
- Vision is agreed upon
- Implementation requirements understood

Consensus

Achieved when a group of individuals with a common goal agree to support activities necessary to achieve that goal, even if that agreement differs from the wishes of individual members of the group.

Consensus Building

Educators will embrace new change when two conditions exist:
- They understand the need for the change
- They perceive that they either have the skills to implement the idea or they have the support to develop the skills

Joyce and Showers
Stages of Systems Change

Infrastructure

- Aligned Practices & Policies
- Professional Learning & Technical Assistance
- Curriculum Design and Instruction
- Intervention Systems
- Data Systems and Management
- Technology support
- Decision-making criteria established
- Schedules

Stages of Systems Change

Implementation

- Implementation Drivers
 - Key components that are critical to a program’s success
- Implementation Teams
 - Increasing/sustaining buy in/readiness
 - Sustaining implementation infrastructures
- Engaged Leadership
- Evaluation
MTSS Implementation

- Organized by a Plan
- Driven by Professional Development
- Supported by Coaching and Technical Assistance (Skill set not nec. a position)
- Informed by Data

Implementation Model

District-based leadership team (DBLT)

School-based leadership team (SBLT)
 School-based coaching
 Process Technical Assistance
 Interpretation and Use of Data

Evaluation Data

Tools

- Beliefs Survey (Consensus)
- Perception of Skills (Infrastructure)
- Self Assessment MTSS (SAM) (Infrastru.)
- Perception of Practices Survey (Implem.)
- Fidelity Checklists – PSP, Tier 1 and 3 (Implementation)

Florida PS/RtI Project
http://floridarti.usf.edu/index.html
School-Based Infrastructure

- School-based leadership team (SBLT)
- School-based coaching
 - Process Technical Assistance
 - Interpretation and Use of Data
- Master Calendar
- Data Days
- Evaluation Model

The Role of the School Based Leadership Team

Who is on the SBLT?

- Principal/Assistant Principal
- Data Coach (role, not necessarily title)
- Facilitator
- General Education Teacher - grade or subject area representation
- Special Education Teacher
- ESL / Bilingual Teacher
- Specialized Teacher (e.g., reading, math)
- Student Services
- Other?
How does the SBLT support RtI?

• Acquire the skills necessary to implement the RtI process
• Assess the impact of instruction and interventions in Tiers 1-3
• Collaborate with building staff to strengthen or modify instruction and interventions
• Embrace the leadership responsibility in the building to promote the use of data-based decision-making to achieve high student performance
 – Share Data with Staff
 – Share Success Stories
 – Model and mentor highly effective instructional practices
• Facilitate Data Days
• Provide training and mentoring for school-based personnel in the use of the RtI process

How do SBLTs support the Problem Solving Process?

• Apply a systematic problem solving process
• Focus on modifying instructional environment to support students
• Use instructions & interventions that have been determined to have a high probability of success given the problem identified
• Collect relevant data and monitor student progress frequently to assess response to the interventions

Core Skill Areas for ALL Staff

• Data-Based Decision Making Process
• Coaching/Consultation
• Problem-Solving Process
• Data Collection and Management
• Instruction/Intervention Development, Support and Evaluation
• Intervention Fidelity
• Staff Training
• Effective Interpersonal Skills
Principal’s Role in Leading Implementation of RtI

- Models Problem-Solving Process
- Expectation for Data-Based Decision Making
- Scheduling “Data Days”
- Schedule driven by student needs
- Instructional/Intervention Support
- Intervention “Sufficiency”
- Communicating Student Outcomes
- Celebrating and Communicating Success

Table Top Discussion

- What Teams already exist at your school?
- What are their purpose, role, and function?
- How effectively do these teams collaborate and communicate?
- What is their impact on student outcomes?
- How might the work of RtI align with these existing teams?

It’s starts with common language, common understanding…
Everybody gets what they need to be the best they can be.

Dr. Nicole Covey, 2015
District Curriculum Director
What we know for sure…

- MTSS/RtI is a general education effort. It’s about Core!
- Every student is everybody’s responsibility
- Data must inform and impact of instruction
- Policies/practices must be consistent with beliefs
- Services based on need and not a location in the building
- Coherent & aligned building-based academic and behavior instruction and support
- Problem-solving process is the backbone for RtI

RtI/MTSS

- Evidenced-based model of schooling
 - uses data-based problem-solving
 - integrates academic and behavioral instruction and intervention
- Integrated instruction and intervention
 - delivered to students in varying intensities (multiple tiers) based on student need
- Decision-making is “need-driven”
 - seeks to ensure that district resources reach the appropriate students (schools) at the appropriate levels to accelerate the performance of all students to achieve and/or exceed proficiency

Critical Features

- Common Language Common Understanding
 - Return on Investment Model
 - Instructional
 - Financial
 - Effectiveness of Tier 1 determines effectiveness of all other Tiers
 - Budget and Instruction/Intervention Integrity is based on an 80-15-5 distribution
Critical Features

Common Language Common Understanding

• Early Warning System
 – Prevention
 – Early Intervention

• How time is used determines how effective instruction and intervention will be.

• The integration of the instruction across Tiers is imperative.

Three Tiered Model of Student Supports

ALL students have access to these levels of support in order to meet benchmarks

Tier 1
GOAL: 100% of students pass benchmark assessments

Effective if approx. 80% are meeting benchmark assessments with only Core.

Tier 2

For approx. 20% of students Tier 1 Core + Supplemental …to pass benchmark assessments.

Effective if approx. 70-80% of students in group improve performance (i.e., gap closing).

Tier 3

For Approx. 5% of Students Tier 1 Core + Supplemental + Intensive Individual Instruction …to pass benchmark assessments.

Effective if there is progress (i.e., gap closing).

The goal of the tiers is student success, not labeling.

Tiers as Resources

Tier 3
For Approx 5% of Students
Tier 1 Core
Supplemental
Intensive Individual Instruction
...to pass benchmark assessments.

Tier 3 Effective if there is progress (i.e., gap closing)
What is your reality?

- What about the culture present in your building will support systemic change?
- Most will benefit from Intensive Instruction
- Some need more support
- A few learn easily
- NEARLY ALL work in core curriculum

RtI is not about another new “initiative”

This is about integrating what we know works!

Problem-Solving is the Engine That Drives Instruction and Intervention

It is the MOST Critical Skill A Leader Can Possess
Problem Solving Process

Define the Problem. Identify the goal
- What do we want students to know and be able to do?

Problem Analysis
- Why is the goal not being attained?
 - Validating Problem
 - Identify Variables that contribute to Problem
 - Hypothesizes/Data Collection

Implement Plan
- What are we going to do about it?
 - Implement as Intended
 - Progress Monitor
 - Modify as Necessary

Evaluate
- Did it work?
 - Response to Instruction & Intervention

Problem Solving Process: Levels of Implementation

<table>
<thead>
<tr>
<th>Level of Implementation</th>
<th>Problem Solving Team</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Individual Teacher and/or Teacher Teams</td>
<td>Student is continually absent from class</td>
</tr>
<tr>
<td>Classroom</td>
<td>Individual Teacher and/or Teacher Teams</td>
<td>A large number of students in one classroom failed the unit test</td>
</tr>
<tr>
<td>Grade/Department Level</td>
<td>Teacher Teams and/or Instructional Leadership Team</td>
<td>A majority of students in grade 4 did not perform well on the mid-year assessment</td>
</tr>
<tr>
<td>School Level</td>
<td>Instructional Leadership Team</td>
<td>Low overall percentage of students meeting growth targets</td>
</tr>
<tr>
<td>District Level</td>
<td>Network Leadership Team or District Senior Leadership Team</td>
<td>Increase in expulsions across schools</td>
</tr>
</tbody>
</table>

Steps in the Problem-Solving Process

1. **Define the Problem** *(What is the Goal?)*
 - Determine the gap or difference between the expectation and what is actually occurring in terms of student performance or behavior

2. **Problem Analysis** *(Why is it occurring?)*
 - Hypothesize possible root causes
 - Analyze supplemental data to support or refute each hypothesis
 - Validate whether your hypothesis is true based on the additional data

3. **Implement Plan** *(What can be done to solve it?)*
 - Select the intervention(s) or strategies that will address the problem
 - Develop and implement the plan with fidelity

4. **Evaluate** *(Did it work?)*
 - Collect and use school-wide, small group, and individual student data to determine if the plan is working to address the problem
 - Progress monitor and modify, if necessary
 - Evaluate the response: good, questionable, poor
Steps in the Problem-Solving Process

1. Goal Identification
 - Identify replacement behavior
 - Data: current level of performance
 - Data: benchmark level(s)
 - Data: peer performance
 - Data: GAP analysis

2. Analysis
 - Develop hypotheses (brainstorming)
 - Develop predictions/assessment

Problem Identification

Problem Identification

Problem Identification

Scholastic Reading Inventory (SRI)

Which students may require additional instruction and/or intervention?

Case Study:
Happy high school
Happy High School
School Graduation Trend and District Goals

Rate of Growth for Graduation:

2%
It will take 11.5 years to close the gap

Finding the Average Rate of Growth

2011-12 2012-2013 2013-14
65 67 69
2% increase
3 years of data, 2 data points
Finding the Average Rate of Growth
2018 Graduation Target = 92%

<table>
<thead>
<tr>
<th>Year</th>
<th>Graduation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-12</td>
<td>65</td>
</tr>
<tr>
<td>2012-2013</td>
<td>67</td>
</tr>
<tr>
<td>2013-14</td>
<td>69</td>
</tr>
</tbody>
</table>

69 – 65 = 4

4 divided by 2 = 2% rate of growth

Happy High School Graduation Rate

- Current Graduation Rate – 69%
 - Desired Level 92%
 - Current level 69%
 - Gap 23%
 - 2 year rate 2%

69 – 65 = 4 divided by 2 = 2%

23% gap divided by 2% growth rate = 11.5 years to close the gap
Happy High School
Graduation Rate by Subgroup

Happy High School
Percent of Students On-Track by Graduation Cohort

<table>
<thead>
<tr>
<th>Grade</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
<th>10th</th>
<th>11th</th>
<th>Graduation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>82%</td>
<td>76%</td>
<td>74%</td>
<td>52%</td>
<td>58%</td>
<td>64%</td>
<td>67%</td>
</tr>
<tr>
<td>2011</td>
<td>84%</td>
<td>76%</td>
<td>76%</td>
<td>53%</td>
<td>57%</td>
<td>62%</td>
<td>65%</td>
</tr>
<tr>
<td>2012</td>
<td>81%</td>
<td>72%</td>
<td>74%</td>
<td>50%</td>
<td>59%</td>
<td>67%</td>
<td>72%</td>
</tr>
<tr>
<td>2013</td>
<td>84%</td>
<td>75%</td>
<td>79%</td>
<td>54%</td>
<td>56%</td>
<td>60%</td>
<td>72%</td>
</tr>
<tr>
<td>2014</td>
<td>88%</td>
<td>78%</td>
<td>79%</td>
<td>50%</td>
<td>61%</td>
<td>69%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Happy High School
9th Grade Data

<table>
<thead>
<tr>
<th>Category</th>
<th>2010 Cohort</th>
<th>2011 Cohort</th>
<th>2012 Cohort</th>
<th>2013 Cohort</th>
<th>2014 Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Failures</td>
<td>39%</td>
<td>41%</td>
<td>40%</td>
<td>39%</td>
<td>37%</td>
</tr>
<tr>
<td>GPA</td>
<td>22%</td>
<td>23%</td>
<td>22%</td>
<td>22%</td>
<td>23%</td>
</tr>
<tr>
<td>Attendance</td>
<td>17%</td>
<td>18%</td>
<td>17%</td>
<td>16%</td>
<td>15%</td>
</tr>
</tbody>
</table>

AASCD Fall Forward Conference Sept 2015
JElliot, Ph.D.
Happy High School

<table>
<thead>
<tr>
<th>Course</th>
<th>Failure Rate 2009-2010</th>
<th>Failure Rate 2010-2011</th>
<th>Failure Rate 2011-2012</th>
<th>Failure Rate 2012-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Core Math I</td>
<td>45%</td>
<td>47%</td>
<td>37%</td>
<td>39%</td>
</tr>
<tr>
<td>Math Intervention (Elective)</td>
<td>27%</td>
<td>21%</td>
<td>23%</td>
<td>27%</td>
</tr>
<tr>
<td>English 9</td>
<td>14%</td>
<td>8%</td>
<td>12%</td>
<td>14%</td>
</tr>
<tr>
<td>World History</td>
<td>13%</td>
<td>9%</td>
<td>15%</td>
<td>13%</td>
</tr>
</tbody>
</table>

Step 1

1. Goal Identification (What is the problem? What is the goal?)
 - Identify replacement behavior
 - Data- current level of performance
 - Data- benchmark level(s)
 - Data- peer performance
 - Data- GAP analysis

Problem Identification

39% of students become off-track in 9th grade due to course failures. The mathematics content area resulted in the greatest percent of course failures for 9th grade students.
Step 1: Define the Problem

Happy High School

Step 1 Define the Problem

- Develop root cause hypotheses
- Using data validate or invalidate hypotheses
Developing a Hypothesis: Things to Consider

- A hypothesis is an explanation for what the data and your experience tell you.
- Data can only give part of the picture.
- An accurate hypothesis is crucial to designing solutions that will be effective.

Developing a Hypothesis

Developing informed statements about why the desired behavior(s) are not occurring.

Example:
The (desired behavior) is not occurring because…

45% of students are not passing Math I because…

Developing a Hypothesis involves…

- **Answering**: Why isn’t the goal being attained?
- **Identifying** possible root causes
- **Analyzing** and **validating** supplemental data to support or refute each hypothesis
Develop and Validate Hypotheses using ICEL by RIOT

Domains

<table>
<thead>
<tr>
<th>I: Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C: Curriculum</td>
</tr>
<tr>
<td>E: Environment</td>
</tr>
<tr>
<td>- Classroom/School</td>
</tr>
<tr>
<td>- Family/Community</td>
</tr>
<tr>
<td>- Peers</td>
</tr>
<tr>
<td>L: Learner</td>
</tr>
</tbody>
</table>

Procedures

| R: Review |
| I: Interview |
| O: Observe |
| T: Test |

Develop Hypothesis

Instruction
- (strategies, pacing, etc.)

Curriculum
- (order, materials, etc.)

Environment
- (schedule, group size, culture, etc.)

Learner

Key Domains of Learning

<table>
<thead>
<tr>
<th>I</th>
<th>Instruction</th>
<th>Instruction is how the curriculum is taught.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Curriculum</td>
<td>Curriculum refers to what is taught.</td>
</tr>
<tr>
<td>E</td>
<td>Environment</td>
<td>The environment is where the instruction takes place.</td>
</tr>
<tr>
<td>L</td>
<td>Learner</td>
<td>The learner is who is being taught.</td>
</tr>
</tbody>
</table>
Validating Hypotheses using...

RIOT Procedures

Validate Hypotheses

Review of historical records and products

Interviews of key stakeholders

Observe performance in real time functional settings

Test through careful use of appropriately matched measurement strategies/methods

Problem-Solving using the RIOT-ROOT Matrix

Instruction

Variable

Root

Organize

Test
Even though grade 5 scores on the ELA benchmark indicate some growth, students are not showing accelerated growth because classroom behaviors detract from consistent delivery of instruction.

Freshman office referrals are high because teachers are not directly teaching the skills on the school-wide behavior matrix.

The 6th grade benchmark scores are low because the pacing guides do not include all standard assessed for the benchmark.

Your Turn:
Developing Hypotheses
The desired behavior is not occurring because…

39% of students are not passing Math I because…

Happy High School
Hypotheses
The problem is occurring because

Students are off track to course mastery. The mathematics content area resulted in the greatest percent of course failures for 9th grade students.
Prioritizing Hypotheses

- You can’t do them all at once
- Prioritize most critical
- Prioritize for the ‘domino effect’
Hypothesis 1: The difference between expected and current levels of performance in Common Core Math I exists because of excessive absenteeism during 1st period.

Hypothesis 2: The difference between expected and current levels of performance in Common Core Math I exists because teachers do not implement effective instructional practices.

Hypothesis 3: The difference between expected and current levels of performance in Common Core Math I exists because insufficient instruction is not maintaining high levels of student engagement.
Test and Validate Hypotheses

- **Review**: Review of historical records and products
- **Interview**: Interviews of key stakeholders
- **Observe**: Observe performance in real-time functional settings
- **Test**: Test through careful use of appropriately matched measurement strategies/methods

+ Happy High School

REVIEW: Common Core Math I Data

- **Common Core Math I Failure by Indicator Type**
 - Academic Indicators (Low Test Scores/EOC Failure)
 - Engagement Indicators (Attendance/Productivity)
 - Both Academic and Engagement Indicators

+ Model: Happy High School

REVIEW

- **Common Core Math I Course Failure Rate by Teacher**
 - Teacher A
 - Teacher B
 - Teacher C
 - Teacher D

Model: Happy High School

OBSERVE: Conducted Walkthrough

Instruction Component: Percent of Intervals Observed

- Communicate
- Instructional Purpose
- Explicit Instruction
- Modeled Instruction
- Guided Practice with Teacher Support
- Guided Practice with Peer Support
- Independent Practice
- Reflection, Integration and Extension

Model: Happy High School

OBSERVE: Conducted Walkthrough

Percent of Students Engaged by Instructional Component

Student Survey Data: Productivity: The ILT collected survey data from all current students to better understand the barriers that impede productivity (work completion).

<table>
<thead>
<tr>
<th>About how often do you not complete your homework?</th>
<th>Almost Every Day</th>
<th>3-5 times a week</th>
<th>3-5 times a month</th>
<th>5-8 times a semester</th>
<th>Always complete my homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students Engaged by Instructional Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>About how often do you not complete your homework?</th>
<th>Almost Every Day</th>
<th>3-5 times a week</th>
<th>3-5 times a month</th>
<th>5-8 times a semi-</th>
<th>Always complete my homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students Engaged by Instructional Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>About how often do you not complete your homework?</th>
<th>Almost Every Day</th>
<th>3-5 times a week</th>
<th>3-5 times a month</th>
<th>5-8 times a semi-</th>
<th>Always complete my homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students Engaged by Instructional Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AASCD Fall Forward Conference Sept 2015
JElliot, Ph.D.
INTERVIEW: Student Focus Group

High Performing Student Themes:
- Class is boring
- Too much bell work or “teacher talk”
- Requires much “workdown” and too much “paper work”
- Classroom is too small or crowded
- Teacher does not take questions or give feedback

At-Risk Student Themes:
- Classroom is too small or crowded
- Too much bell work or “teacher talk”
- Teacher does not take questions or give feedback
- Classroom is too small or crowded
- Teacher does not take questions or give feedback

What changes could be made within your Algebra 1 class that would make students more interested in learning, more motivated to work hard, and more successful?

High Performing Student Themes:
- Less teacher talk
- More group work
- More frequent use of technology
- Additional practice problems
- More opportunities to work with classmates

At-Risk Student Themes:
- Less teacher talk
- More group work
- More frequent use of technology
- Additional practice problems
- More opportunities to work with classmates

Step 2: Problem Analysis

Concept multiple hypotheses and prediction statements addressing what you think is at the root of the identified issue. Be sure to consider all possible factors by using the I-OIT protocol.

Hypothesis sentence frame: The problem is occurring because __________

Prediction statement frame: If __________ would occur, then the problem would be reduced.

HYPOTHESIS 1:

If students are attending after-school Math Lab to practice skills, then passing rates will increase.

Prediction Statement: If students are attending after-school Math Lab to practice skills, then passing rates will increase.

Related Data: Students who attend the Math Lab report feeling more confident in their math skills.

Validated? True

HYPOTHESIS 2:

If students are attending after-school Math Lab to practice skills, then passing rates will increase.

Prediction Statement: If students are attending after-school Math Lab to practice skills, then passing rates will increase.

Related Data: Students who attend the Math Lab report feeling more confident in their math skills.

Validated? True

HYPOTHESIS 3:

If students are attending after-school Math Lab to practice skills, then passing rates will increase.

Prediction Statement: If students are attending after-school Math Lab to practice skills, then passing rates will increase.

Related Data: Students who attend the Math Lab report feeling more confident in their math skills.

Validated? True
ICEL by RIOT: Validating/Invalidating Hypothesis

• Hypothesis 1: Invalidated
 The difference between expected and current levels of performance in Common Core Math 1 exist because of excessive absenteeism during 1st period.

• Hypothesis 2: Validated
 The difference between expected and current levels of performance in Common Core Math 1 exist because teachers do not implement effective instructional practices.

• Hypothesis 3: Validated
 The difference between expected and current levels of performance in Common Core Math 1 exist because insufficient instruction is not maintaining high levels of student engagement.

Step 3: Develop & Implement Plan
(What can be done to solve it?)

• Select the intervention(s) or strategies that will address the problem and meet the goal

• Develop and implement the plan with fidelity

 Fidelity = Sufficiency + Support

Principles of Intervention Design

The purpose of Intervention is to create an instructional match to accelerate student learning.
Principles of Intervention Design

Interventions should be designed to adjust what is being taught and/or how it is taught.

Principles of Intervention Design

Intervention is...

• Explicit - strategy/instruction to be used are specified clearly (What, who, when, where, how long)
• Focused on instructional environment - actions taken to modify the environment not the individual
• Operationalized – target behavior that is observable and measureable, includes conditions and criteria for success (how know effective?)
• Interventions must be linked to Tier 1 focus, materials, performance criteria

Plan Development

Lots of different formats, but some critical elements needed
Description of Intervention

<table>
<thead>
<tr>
<th>Plan Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1 2 3</td>
</tr>
</tbody>
</table>

Implementation

Frequency:
Amount of Time:
When:
Who:

Support

Who:
How Often:
Description/Type:

Data Collection

Type:
Review Dates:
Expected Performance on Review Dates:
Responsible Party:

Review

Date:
Decision:
Positive Questionable Poor
Next Steps:

Step 3: Intervention Implementation

Guiding questions to keep in mind:
1. Who is the intervention plan being developed for?
2. What is the expected behavior or level of performance?
3. What is the current level of performance?
4. What data will be collected?
5. How will we know this plan is working?

Implementation Plan

- **Intervention Plan**
 - Who is responsible?
 - Where will they be?
 - What will they do?
 - When will it occur?

- **Intervention Plan**
 - How often?
 - Total amount of time/length of class periods?
 - Amount of time (How long/week/day/month/year)?

- **Intervention Plan**
 - Frequency (Hours/Week):
 - Intervention statement (Supplement 12th grade Math class will provide at least 5 student engagement opportunities/periods per week)
Intervention Support Meeting Activities

• Review student performance data

• Identify barriers to successful implementation of the instruction/intervention
 – Problem-solve barriers

• Review critical components of the instruction/intervention
Step 4: Evaluate (Did it work?)

- Collect and use school-wide, small group, and individual student data to determine if the plan is working to address the problem/goal
- Progress monitor and modify, if necessary
- Evaluate the response to intervention: Good, Questionable, Poor

Evaluating the Effectiveness of Intervention

- Is the intervention evidence-based?
- How “intense” is the intervention?
- What can we “expect” the intervention to do?
- Was the intervention implemented as planned?
- How effective is the intervention with students from similar and different backgrounds?

How Do We Determine If The Intervention Worked?

Good, Questionable, and Poor RtI

What does the “Growth Line” look like?
Decision Rules:
What is a “Good” Response to Intervention?

- **Positive Response**
 - Gap is closing
 - Can extrapolate point at which target student(s) will “come in range” of target—even if this is long range
 - Level of “risk” lowers over time

- **Questionable Response**
 - Rate at which gap is widening slows considerably, but gap is still widening
 - Gap stops widening but closure does not occur

- **Poor Response**
 - Gap continues to widen with no change in rate.
Positive Response to Intervention

Performance

Observed Trajectory

Expected Trajectory

Time

Decision Rules:
Linking RtI to Intervention Decisions

• Positive
 • Continue intervention with current goal
 • Continue intervention with goal increased
 • Fade intervention to determine if student(s) have acquired functional independence.

Percent of Students Moving to Proficient/Advanced From 2% in 08/09 to 6.9% in 10/11
Decision Rules:

What is a “Questionable” Response to Intervention?

- **Positive Response**
 - Gap is closing
 - Can extrapolate point at which target student(s) will “come in range” of target—even if this is long range

- **Questionable Response**
 - Rate at which gap is widening slows considerably, but gap is still widening
 - Gap stops widening but closure does not occur
 - Level of “risk” remains the same over time

- **Poor Response**
 - Gap continues to widen with no change in rate.

Decision Rules:

Linking RtI to Intervention Decisions

- **Questionable**
 - Was intervention implemented as intended?
 - If no - employ strategies to increase implementation integrity
 - If yes -
 - Increase intensity of current intervention for a short period of time and assess impact. If rate improves, continue. If rate does not improve, return to problem solving.
Decision Rules:

What is a “Poor” Response to Intervention?

- **Positive Response**
 - Gap is closing
 - Can extrapolate point at which target student(s) will “come in range” of target—even if this is long range

- **Questionable Response**
 - Rate at which gap is widening slows considerably, but gap is still widening
 - Gap stops widening but closure does not occur

- **Poor Response**
 - Gap continues to widen with no change in rate.
 - Level of “risk” worsens over time
Discovery Education Assessment Results: Math

Which Line Represents the Greatest Growth?

Decision Rules:
Linking RtI to Intervention Decisions

- **Poor**
 - Was intervention implemented as intended?
 - If no - employ strategies to increase implementation integrity
 - If yes -
 - Is intervention aligned with the verified hypothesis? (Intervention Design)
 - Are there other hypotheses to consider? (Problem Analysis)
 - Was the problem identified correctly? (Problem Identification)
Evaluating Intervention Plan

- Were the hypotheses confirmed?
- Did the instruction/intervention improve outcomes? As evidenced by?
- Did the additional instruction/intervention improve performance?
- Do you have clear direction for intervention revision?

National Resources to Support Network and School Implementation

- www.floridarti.usf.edu
- www.florida-rti.org
- www.nasdse.org
- www.rtinetwork.org